
Babylon Cross-Application Scripting

A security advisory

Yair Amit <amityair@il.ibm.com> - Roee Hay <roeeh@il.ibm.com>

IBM Rational Application Security Research Group

November 10, 2010

1 Introduction

Babylon is a single-click computer online dictionary and translation software
which is also capable of translating whole documents and web pages. The
translation and dictionary results are presented to the user via the Trident
layout engine (an in-app/embedded Internet-Explorer rendering engine).

2 Vulnerability

Babylon fails to sanitize user input before rendering it on the Trident control,
e�ectively leading to a Cross-Application Scripting vulnerability.
The user's input can originate from the following sources:

1. Babylon's main translation interface: When searching for a non-existent
term Babylon pushes the string �No matches were found for 'non-existent
term'. Search the web for non-existent-term�. Unfortunately, 'non-existent
term' is not HTML encoded or validated before it is written on the embed-
ded browser (the translation process transparently validates translatable
input).

2. Document translation: Documents (such as PDF �les) may contain text
which cannot be translated (e,g. JavaScript code), in such case it is ren-
dered without HTML encoding or validation.

3. Web site translation: Same as the document translation case. Text which
is not translated is simply rendered on the Trident control.

In order to trigger an attack, the victim has to be lured into translating malicious
text, either in a document or on a web page. Although the scenarios require
some social-engineering, some of them are feasible and realistic.

1



3 Impact

The Trident control runs in Local Machine Zone (LMZ) which is not Locked
down. This allows a malicious script to perform the following actions:

1. Interact with other websites in the background while using persistent cook-
ies to impersonate the victim: This can be done using XHR. The payload
can leak the response's body which may contain sensitive information in
case the victim has been authenticated on the site prior to the attack. The
payload can also perform actions on the site on behalf of the victim.

2. Collect information from local �les: This can be done using XHR or by a
hidden iframe with the �lename's as the source. Since the payload runs
in a non-Locked-down LMZ, the XHR response or iframe's body can be
inspected and sent back to the attacker.

3. Code execution: System commands can be executed by using the
Wscript.Shell ActiveX object to practically take over the whole system.

4 Vulnerable versions

Versions prior to 8.0.7 are susceptible to this vulnerability.

5 Acknowledgments

We would like to thank the Babylon team for their quick responses and the
e�cient way in which they handled this security issue.

6 References

1. Babylon's homepage: http://www.babylon.com/

2. Enhanced Browsing Security:
http://technet.microsoft.com/en-us/library/bb457150.aspx

2


